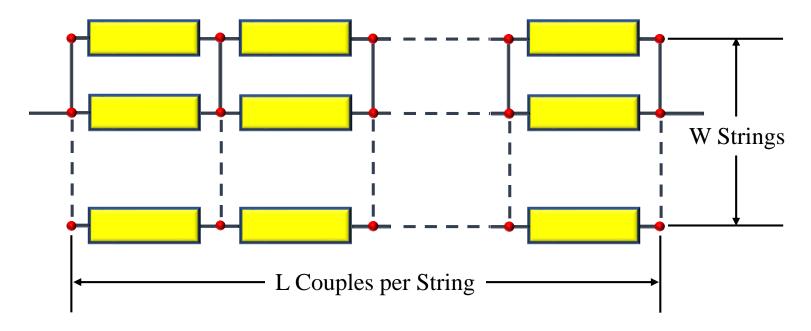
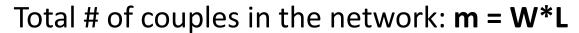


International Conference on Thermoelectrics: Caen, France

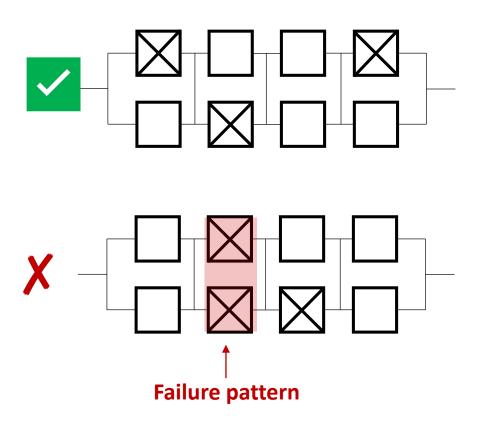

A Study on the Reliability of Thermoelectric Couple Networks


Jet Propulsion Laboratory
California Institute of Technology

Christopher Matthes, Chester Everline, David Woerner, Terry Hendricks

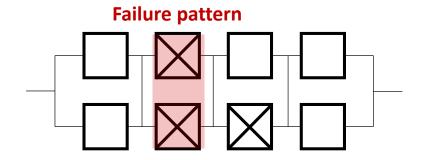
Network Architecture

- The model is based on a thermoelectric couple (TC) network consisting of W redundant, fully cross-strapped strings (series-parallel circuit) with L couples per string, as depicted below.
- This model considers only catastrophic failure (due to loss of electrical continuity), and therefore is generally most valid for cantilevered TC designs.



Requirements for success

1. Electrical continuity



2. Sufficient power output

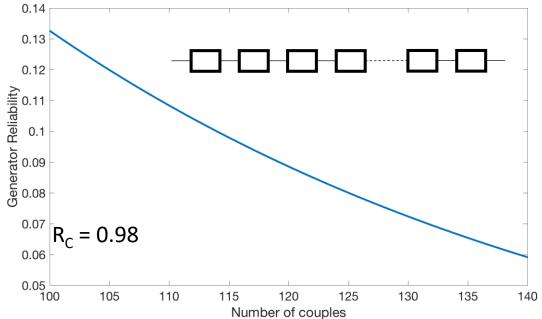
Generator Reliability Model^[1]

$$R_{G} = \sum_{i=0}^{j} \left[\binom{m}{i} - F_{i} \right] R_{C}^{m-i} [1 - R_{C}]^{i}$$

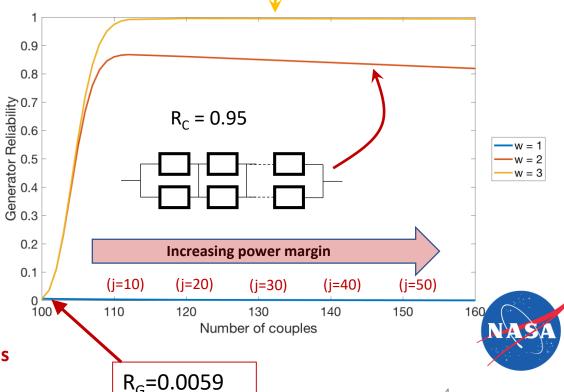
Number of possible **arrangements** of *i* failures in a network of *m* couples

Number of possible failure patterns for *i* failures

 R_{C} = couple reliability = $e^{-\lambda t}$ $\lambda = \frac{1}{MTBF}$ m = total number of couples in network

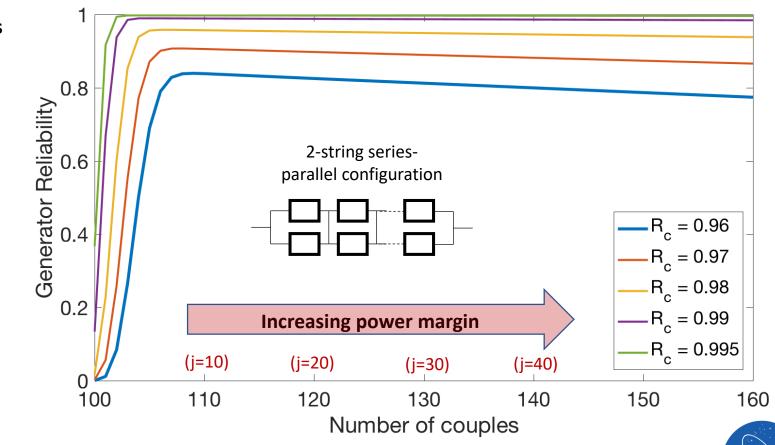

- This is a binomial distribution problem, where the reliability is described by the cumulative distribution function, minus the probability of encountering a failure pattern
- ❖ Goal is to assess **generator reliability** R_G using a defined **couple reliability** R_C by expressing the probability of having **j** or fewer failures, without encountering a **failure pattern**
- ❖ F can be determined using a Monte-Carlo analysis, but a closed-form solution of this model was developed and used for the following numerical results

[1] Karr, C. H., "Reliability of Thermoelectric Couple Networks Based Upon Couple Catastrophic Failure," *IEEE Transactions on Reliability*, Vol. R-19, No. 3, August 1970, pp. 116-119.



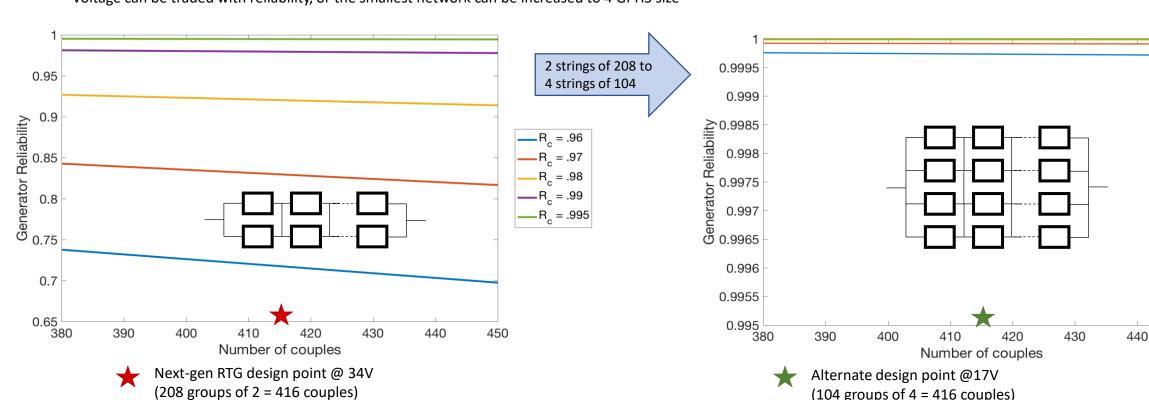
Sensitivity study: Network Architecture

- Reconfiguring a network containing a defined number of couples into single, two, and threestring cross-strapped architectures affects reliability
- Voltage requirement will define constraints on required length of strings
- As # of couples increases, there are more opportunities for **failure patterns** to occur, causing reliability to decrease after a maximum
- Lower couple reliability necessitates more strings to achieve acceptably high generator reliability



*Power requirement achieved here with at least 100 operable couples

Sensitivity study: Couple Reliability


- Adding couples to the network increases the margin between the power output and the requirement, but does not always result in higher overall reliability
- R_G reaches a **peak** and then begins to decrease with additional couples to the network
- Higher R_C:
 - Results in a higher overall R_G
 - Reaches peak with lower power margin (needs less insurance)
 - R_G declines more slowly after reaching peak (harder to experience a failure pattern)

*Power requirement achieved here with at least 100 operable couples

Example: Next-Generation RTG

- Each variant is based on the smallest 2 GPHS network, wired in parallel (to maintain consistent voltage)
- 2 GPHS variant has a total of 416 couples (constrained by size)
 - 2 groups of 208 results in 34 V output
 - 4 groups of 104 results in 17 V output
- Voltage can be traded with reliability, or the smallest network can be increased to 4 GPHS size

Proposed variants (artist's concept)

Conclusions

- Distributing couples in a network to a greater number of strings improves reliability
 - Trade between voltage and reliability
 - Relaxes the couple reliability requirement dramatically
- For a series-parallel network, adding couples above minimum requirement to the strings initially increases the reliability to a peak, then gradually lowers the reliability with additional couples
 - Redundancy does not necessarily result in greater reliability (reliability trades with power margin)
- Greater couple reliability results in less penalty in network reliability for each additional couple
- High generator reliability requires either:
 - Very high couple reliability
 - Strategic electrical network configuration

jpl.nasa.gov

This work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract to the National Aeronautics and Space Administration.

Backup

Developing a model: Relevant equations

- 1. Probability that at least the **minimum number of couples** is operating (cumulative distribution function)
 - *m* = # of couples in the network
 - *i = # of couple failures*
 - *j* = maximum # of couple failures to meet power requirement
- 2. Probability of maintaining electrical continuity:
 - Couple reliability (survival function):
 - Failure rate:

$$R_{P} = \sum_{i=0}^{j} {m \choose i} R_{C}^{m-i} [1 - R_{C}]^{i}$$

$$R_E = \{1 - [1 - R_C]^L\}^W$$

$$R_C = e^{-\lambda t}$$

$$\lambda = \frac{1}{MTRF}$$

 Combining the two requirements for success necessitates an exploration of the common points in the sample space

